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A new unstaggered finite-difference time-dependent technique to accurately
model scattring from prototypical 2D antenna structures is devised. The unbounded
boundary value problems defining these phenomena are redefined over bounded do-
mains using appropriate radiation operators over finite artificial boundaries.
Generalized curvilinear coordinates are generated such that physical boundaries cor-
respond to coordinate lines. A numerical procedure to generate almost orthogonal,
boundary-conforming, fine grids over these bounded regions is developed. Once
the governing equations are written in terms of the new curvilinear coordinates, a
time-dependent numerical method is applied to obtain time harmonic steady-state
solutions to these problems. The electric field wave amplitude as well as the wave
pattern inside the waveguide and the scattered field from the prototypical antennas
are obtained. Accuracy and computational cost are compared when almost orthog-
onal and nonorthogonal grids are in use. An optical theorem for a flanged waveg-
uide antenna with perfect electrical conductor walls is derived. It is verified that
the approximate solutions obtained by application of the time-dependent numeri-
cal method with boundary-conforming, curvilinear coordinates satisfy the optical
theorem. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Since the pioneering work by Yee [46] numerous works where numerical solutions of
electromagnetic scattering problems have been obtained by means of finite-difference tech-
niques have appeared in the electromagnetic literature. Most of them were based on the
classical staggered method introduced by Yee and developed and popularized by Taflove
and Brodwin [40], which is well known as finite-difference time domain (FDTD). This
method and its improved and extended versions have been successfully applied to a great
deal of electromagnetic problems. Since Yee’s method is based on a uniform cartesian grid,
a clear disadvantage of this procedure is that curved electromagnetic structures are staircase
approximated, introducing additional errors in the approximation [4, 16, 38]. Two different
approaches have evolved to improve the staircasing approximation of curved boundaries
and to reduce the errors associated with it. One of them consists in a modification of the cells
only in the vicinity of the boundaries while a cartesian grid is maintained in the remainder
of the computational domain [5, 6, 14, 19, 30, 33]. These models have been called locally
conformal grids and also contour-path finite-difference time domains. They are based on
implementation of Ampere and Faraday’s laws in integral form at selected cells imme-
diately adjacent to the boundaries whose contours are deformed to conform with surface
curvatures. It has been found that some of the methods within this category exhibit late time
instability independent of the time step [29].

The second approach consists in a formulation based on global curvilinear coordinates
to avoid the staircased approximation. The pioneering work in this direction is due to
Holland [15]. Subsequent work was reported by Fusco and Lee et al. [8, 9, 25]. The original
Cartesian grid is replaced by a convenient global curvilinear grid that fits the boundary.
Then Maxwell’s equations are written in terms of the new curvilinear coordinates. This
results in equations combining the covariant and contravariant components of the electric
and magnetic fields, adding to the complexity of the computation. Finally, the staggered
FDTD numerical scheme is applied to the new Maxwell’s equations over the curvilinear
non-cartesian cells. As pointed out in [17], loss of accuracy may result due to the fact that the
cell center of the primary grid does not coincide with the edge center of any edge of the dual
grid. In [17, 26, 27, 31, 39] unstaggered schemes based on global curvilinear coordinates are
presented. In the first of these papers, central difference discretization for spatial derivatives
involved in Maxwell’s equations is replaced by a combination of forward and backward
differencing. In [31, 39] Maxwell’s equations are written in conservation form, a global
coordinate transformation is implemented, and the Lax–Wendroff upwind scheme is applied
to Maxwell’s equations in conservation form in terms of the new curvilinear coordinates.
This technique is known as finite volume time domain. In [26, 27] the new curvilinear
coordinates are obtained numerically by means of a well-known nonorthogonal elliptic grid
generator [42]. All of the above works consider structured grids. Unstructured grids have
also been considered to model scattering from arbitrarily-shaped domains [10, 11, 29]. They
have been called generalized Yee methods. For a detailed account of these methods the reader
is referred to [41]. At present, the two approaches continue their development. As recently
stated in [41], “the best choice of computational algorithm and mesh remains unclear.”

Here, we describe a new finite-difference time-dependent method for the numerical mod-
eling of scattering from 2D prototypical antennas as shown in Fig. 1. We have chosen anten-
nas with different flare angles to show the applicability of the method to arbitrarily-shaped
domains. The 90◦ flare angle antenna will be called flanged waveguide antenna (FWA). The
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FIG. 1. Prototypical antenna domains.

horn antenna with a smooth bend at the aperture will be called a curved horn antenna (CHA)
and the one with nonsmooth bend at the aperture will be called a bent horn antenna (BHA).

We studied the transverse magnetic polarization problem TMy, but instead of working
directly on the system of Maxwell’s equations as in all previously-cited work, we reduce
Maxwell’s equations to a scalar 2D wave equation for the only nonzero component of
the electric field. Previous analogous work in 2D electromagnetic scattering modeled by a
scalar wave equation only involved Cartesian or cylindrical coordinates [22, 28, 37, 44].
The method is formulated for the flanged waveguide antenna since it can easily be extended
to the horn antennas. Before a description of our finite-difference technique is attempted,
the original infinite domain needs to be transformed into a finite domain. We define a
finite flanged waveguide domain as the bounded region D enclosed by the open rectangle
−z∞ ≤ z < 0, 0 ≤ x ≤ 1, and the semicircle 0 ≤ r = (x − 1/2)2 + z2 ≤ r2

∞, with z ≥ 0,
where z = −z∞ and r = r∞ are fictitious infinite boundaries. This region is illustrated in
Fig. 2. To avoid spurious reflections at the fictitious boundaries and the resulting lack of
accuracy in the computation, we impose absorbing radiation boundary conditions at the
fictitious infinite boundaries. We define these radiation conditions from local annihilating
operators acting over asymptotic expansions of the solutions in the far field [1, 2, 13] and
at the end of the waveguide [23].

Even for this simplified prototypical antenna, application of the FDTD method will
require a special treatment at the fictitious infinite curved boundary at r∞. Our technique fit
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FIG. 2. Receiving problem.

well under the second approach outlined above. We numerically generate various boundary-
conforming grids over the antenna domains. Then, we express the governing equations in
terms of the new curvilinear coordinates. The space and time derivatives are approximated
by central finite difference, and finally by applying an explicit marching in time finite-
difference scheme, accurate approximations of the electric field amplitude are obtained.
We call this method time dependent with boundary-conforming coordinates or simply TD-
BCC. A unique feature of our procedure is the use of second-order local radiation boundary
conditions at the end of the waveguide z∞, and also at r∞, in terms of curvilinear coordinates.

During the past 10 years FDTD methods have been successfuly applied to model transmit-
ting and receiving antennas of various types and complexities [20, 34, 43]. A more extensive
set of references can be found in [41]. Most of these works use staircase or contour-path
techniques to approximate the antenna contour, and the fictitious infinite boundaries. Al-
though our computation models very simplified antenna structures, we show through these
simple models the potential advantage of using globally conforming boundary techniques
combined with numerical grid generation of various types to model scattering from more
realistic antennas or complex structures.

A major goal in this work was to determine the influence of grid orthogonality on the
accuracy of the numerical approximation and computational cost of the procedure. To the
best of our knowledge this is the first time that globally orthogonal grids other than cartesian
grids have been used to numerically model scattering of electromagnetic waves from ar-
bitrarily shaped domains. Through numerical validation, we also estabished a relationship
between time step and grid size to guarantee numerical stability for TD-BCC method. All
of our numerical experiments were found to be free of late time instability, which has been
frequently found in other FDTD algorithms. Numerical experiments were performed, chang-
ing the incident angle of the incoming wave and the frequency of the incident wave. These
experiments allowed us to determine the wave pattern inside and outside the waveguide as
a function of the incident angle and frequency.

Based on a conservation of power law and following a recent work by Kriegsmann
[24], we derived an optical theorem for a flanged waveguide antenna with perfect electrical
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conductor walls. This theorem establishes a relationship among the scattering cross section,
transmission coefficients of the solution inside the waveguide, and the leading-order term
of the far field amplitude in the direction of the incident wave. Then, we verified that our
approximate solutions obtained by application of the TD-BCC satisfy the optical theorem.

2. STATEMENT OF THE WAVE PROPAGATION PROBLEMS

Our prototypical antennas consist of semiinfinite parallel-plate waveguides and the an-
tenna walls extending from the aperture. We assume transverse magnetic polarization with
respect to the y-axis, TMy. Cross sections perpendicular to the y-axis for the flanged
waveguide and horn antennas are shown in Fig. 1. The independent variables x and z have
been scaled with respect to the guide’s width a. We consider an E-polarized plane wave
propagating in a plane perpendicular to the y-axis,

Ei(z, x, t) = eik(−cos(δ)z+sin(δ)x) e−ikt j = Winc(z, x, t)j, (1)

where δ is the incident angle of the incoming plane wave with the negative z-axis, and k
denotes the scaled wave number and frequency, assuming wave speed c = 1. Because of
the geometry of the domains and the nature of the incident wave, the scattered field and
the total electric field E(z, x, t) are also E-polarized waves in the y direction. Therefore,
E(z, x, t) = W (z, x, t, )j, and the vector Maxwell equation for the electric field reduces to
a scalar wave equation for its only nonzero component W (z, x, t) in the y direction,

Wtt = (Wxx + Wzz). (2)

We also assume that the antenna walls including the waveguide parallel-plate are made of
a perfect electrical conductor (PEC). Consequently,

E(z, x, t) · j = W (z, x, t)j · j = W (z, x, t) = 0, in L, (3)

where L is the boundary corresponding to the antenna walls. As stated in the Introduction,
before any numerical method is applied, it is necessary to redefine the problem over a
bounded domain. From this point on, we specialize the problem formulation and the deriva-
tion of the numerical method to the flanged waveguide antenna. The method can be easily
adapted to the horn antennas and will be discussed later in this work. We have already
defined the finite flanged waveguide domain as our bounded region. Therefore, we also
need to impose radiation conditions over the artificial boundaries z∞ and r∞ to complete
the boundary value problem. Following Kriegsmann, Bayliss, and others [1, 2, 13, 23], we
obtain these radiation conditions from local annihilating operators acting over asymptotic
expansions of the solutions in the far field. First, the total electric field is decomposed as
W = Winc + Wr + Wsc, where Winc is given by (1), Wr (x, z, t) = − eik(cos(δ)z+sen(δ)x)e−ikt is
the specularly reflected wave of Winc from a PEC wall, and Wsc is the scattered wave.
According to [3], an asymptotic expansion of the scattered field is given by

Wsc(r, θ, t) = eikr

√
r

∞∑
j=0

A j (θ)

r j
e−ikt, r → ∞, t → ∞, (4)
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where r = (x − 1/2)2 + z2 and tan(θ) = (x − 1/2/z). Second, Kriegsmann and Bayliss
radiation type operators for applied over (4). As a result, we obtain the radiation conditions

R(W )r=r∞ = R(Winc + Wr + Wsc)r=r∞ = R(Winc + Wr )r=r∞ , z ≥ 0, (5)

L(W )z=z∞ = 0, (6)

where L and R operators are defined as

R(W ) = Wt + Wr + W

2r
(7)

L(W ) = −σ

∫ t

0

∂2W

∂x2
(z, x, t ′) dt ′ − ∂W

∂z
+ ε

∂W

∂t
. (8)

The parameters σ and ε were given in (23) as

σ = k

k1 + k2
, ε = k2 + k1k2

k(k1 + k2)
,

where kn =
√

k2 − (nπ)2 for n = 1, 2 . . . .

To finish our boundary value problem, initial conditions need to be included in the
formulation. The limiting amplitude principle estabishes that upon excitation of the elec-
tromagnetic medium by a time-harmonic force of frequency k the total electric field will
also evolve to a time-harmonic steady state of the same frequency regardless of the initial
conditions. Therefore, arbitrary initial conditions may be used. For simplicity, we impose
null initial conditions in our problems

W (z, x, 0) = 0, Wt (z, x, 0) = 0. (9)

In brief, Eqs. (1)–(3), (5), (6), and (9) define the receiving boundary value problem for
the flanged waveguide antenna, which is illustrated in Fig. 2.

To check the accuracy and computational cost of the numerical method analyzed in
this work, we also consider the scattering of an electromagnetic E-polarized plane wave
propagating in a plane perpendicular to the y-axis (1), from an infinite PEC wall. A bounded
domain for this problem is the fan domain shown in Fig. 3. Boundary conditions over the
wall and the artificial boundary r = r∞ are W (0, x, t) = 0 and R(W ) = R(Winc + Wr ),
respectively. Its exact solution can be easily calculated as the superposition of the reflected
wave with the incident wave and is given by

W (z, x, t) = −2i sin(kz cos(δ))eikx sin(δ)e−ikt. (10)

3. TIME-DEPENDENT NUMERICAL METHOD WITH BOUNDARY-CONFORMING

CURVILINEAR COORDINATES

Because of the limiting amplitude principle [32], linear wave propagation problems where
a time-harmonic incident wave is present can be modeled either by the Helmholtz equation,
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FIG. 3. Scattering from a PEC wall.

also called the frequency-domain equation, or by the corresponding time-dependent wave
equation. The solution of the frequency-domain problem can be obtained from the time-
dependent problem solution when t → ∞. Time-dependent numerical methods use an
explicit finite-difference time marching scheme to obtain the numerical solution of the wave
problems. As the time becomes large, the transient state resulting from the initial conditions
dies out and the time-dependent solution approaches the harmonic steady-state solution of
the corresponding frequency-domain problem. Time-dependent numerical methods have
also been applied to scattering problems in acoustics and elasticity [18, 22, 28, 36, 37]. In
these areas, there is also a need for numerical methods capable of modeling scattering from
obstacles of arbitrary shape.

As mentioned in the Introduction, we use a TD-BCC method to numerically model
scattering in the regions shown in Fig. 1. Our approach is rather general; we consider these
domains as arbitrary and generate generalized curvilinear coordinate systems such that the
boundaries correspond to coordinate lines. These types of coordinates, called boundary-
conforming coordinates [21], are generated by an invertible transformation T : D′ → D,
from a rectangular computational domainD′ with coordinates (ξ, η) to the physical domains
D with coordinates (z, x).

More precisely, the transformation is defined as

x = x(ξ, η) and y = y(ξ, η), (11)

where the computational rectangleD′ is formed by all pairs (ξ, η) such that 1 ≤ ξ ≤ N2 and
1 ≤ η ≤ N1. In Fig. 4, a graphic of this transformation for the bounded flanged waveguide
domain is shown. In the process of obtaining a new coordinate system, we also obtain a
grid in the physical domain as an image of a rectangular grid in the computational domain.
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FIG. 4. Transformation from a rectangular domain to a FWA domain.

For simplicity, we choose a rectangular grid in the computational domain D′ with step sizes
�ξ = 1, �η = 1, and with N1 and N2 nodes in the ξ and η directions, respectively. A finer
grid can be generated in the physical domain, keeping the step sizes equal to 1 and increasing
the number of nodes N1 and N2 of the computational domain. The integer number ξ = Ng

corresponds to the number of horizontal nodes in the semiinfinite waveguide. We denote
ξi = i ∗ �ξ = i , η j = j ∗ �η = j , and the approximations of x(ξi , η j ) and z(ξi , η j ) as
xi, j and zi, j , respectively. To guarantee a smooth transformation, we adopt a differential
equation approach to generate the new coordinates (7, 35, 36, 42, 45). First, transformation
of the rectangular boundaries into the physical boundaries is defined (see Fig. 4). Then
a Dirichlet boundary value problem, defined by a system of partial differential equations
in the rectangular region D′, is numerically solved to obtain the transformation from the
interior of the rectangular domain to the interior of the physical region. We consider two
different systems of partial differential equations and numerically generate three different
curvilinear coordinates systems and corresponding grids.

3.1. Boundary Value Problems in Generalized Curvilinear Coordinates

Once the boundary-conforming coordinates have been obtained, the original receiving
antenna problems described in Section 2 need to be rewritten in terms of the new coordinates.
For instance, the wave equation (2) in generalized curvilinear coordinates ξ and η changes to

Wtt = J−2(αWξξ − 2βWξη + γ Wηη) + J−3(αzξξ − 2βzξη + γ zηη)(xξ Wη − xηWξ )

+ J−3(αxξξ − 2βxξη + γ xηη)(zηWξ − zξ Wη), (12)

where α, β, and γ are scale metric factors of the transformation T defined by

α = x2
η + y2

η, β = xξ xη + yξ yη, γ = x2
ξ + y2

ξ , (13)

and J is the determinant or jacobian of the jacobian matrix, J , of the transformation (11).
Evidently, Eq. (12), although still linear, is more complex than the original wave equation.
The advantage of the transformation is that this equation is defined over a rectangular do-
main now. Thus, a finite-difference approximation of the derivatives near the boundaries
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can be performed without interpolation in the computational independent variables ξ and η.
Moreover, under certain conditions on the properties of the transformation, Eq. (12) can be
greatly simplified. We will take advantage of this simplification later on this work.

On the other hand, boundary conditions over the antenna walls in terms of ξ and η are
written as

W (ξ, 1, t) = 0, W (ξ, N1, t) = 0, 1 ≤ ξ ≤ N2, t > 0, (14)

while radiation conditions for these receiving problems are given by

Lξη(W )(1, η, t) = 0, (15)

Rξη(W )(N2, η, t) = Rξη(Winc + Wr )(N2, η, t), 1 ≤ η ≤ N1, t > 0. (16)

The incident wave Winc was defined in (1), and Wr is the corresponding reflected wave. The
operators Lξη and Rξη in terms of ξ η are given by

Lξη(W ) = − σ

J 2
z2
ξ

∫ t

0

∂2W

∂η2
dt ′ − 1

J

(
xη

∂W

∂ξ
− xξ

∂W

∂η

)
+ ε

∂W

∂t
, (17)

Rξη(W ) = ∂W

∂t
+ cos(δ)

J

(
xη

∂W

∂ξ
− xξ

∂W

∂η

)
+ sin(δ)

J

(
−zη

∂W

∂ξ
+ zξ

∂W

∂η

)

+ W

2
√

x2(ξ, η) + z2(ξ, η)
. (18)

A brief outline of the various grids to be generated in the following three sections will now
be given. At first, we will generate boundary-conforming grids over the antenna domain
by applying a Winslow or a homogeneous Thompson, Tames, Mastin (TTM) generator
[21]. It will be shown that TTM grids are strongly nonorthogonal in our antenna domains.
So we will generate almost orthogonal grids in an attempt to improve the accuracy of the
numerical method and decrease the computational cost. We will apply Eca and Ryskin–Leal
techniques [7, 35] also known as the scaled-Laplacian generator, over the antenna domain.
As a result, we will obtain almost orthogonal grids. However, they will not be sufficiently
fine to obtain accurate solutions for the FWA domain. The scaled-Laplacian grid generator
algorithm will fail to converge for step sizes smaller than certain values at those aperture
corner points where the angle between the grid lines is close to 270◦ for the FWA domain.
To avoid this problem, the FWA domain will be divided into two regions: a finite rectangular
waveguide from the artificial boundary at z = z∞ to the aperture at z = 0, and the region
enclosed by a semicircle of radius r∞ for z ≥ 0, which will be called the “fan domain.” A
uniform rectangular grid will be trivially defined inside the waveguide by means of equally
spaced vertical and horizontal lines, while an orthogonal non-Cartesian grid will be obtained
using a scaled-Laplacian generator for the fan domain. These two grids will be matched
at the aperture using osculating polynomials that we call generalized fifth-order Hermite
polynomials. It will be shown that the new grid is orthogonal everywhere except at a few
nodes near to the aperture, but more importantly, it will also be shown that this grid can be
made as fine as needed for the accuracy of the TD-BCC method.
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3.2. Grids Generated Using the TTM Technique

In this section, we show nonorthogonal grids generated from the numerical solution of
a Dirichlet boundary value problem defined by an elliptic system of partial differential
equations given by

αzξξ − 2βzξη + γ zηη = 0,
(19)

αxξξ − 2βxξη + γ xηη = 0,

with α, β, and γ defined as in (13). This method is known as the Winslow or homogeneous
TTM grid generator [21]. It is very easy to implement and usually produces unfolded grids.
The starting point for this method, as well as for the others to be described later, is to
choose points over the rectangular boundaries and assign them to boundary points over the
mushroom domain. This constitutes a Dirichlet boundary condition. In our case, we assign
all the N1 nodes in the vertical segment A′ B ′ in D′ to corresponding nodes over the vertical
segment AB inD. The other boundary segments of the rectangular computational domain D′

are likewise assigned as is shown in Fig. 4. Once the generator system of partial differential
equations is discretized, a successive overrelaxation method (SOR) is employed to produce
the new nodes in the physical domain. In Fig. 5, a grid generated according to this method
is illustrated for the data z∞ = 3, r∞ = 3, N1 = 51, N2 = 70, Ng = 30, ω = 1.85, and
tol = 10−4, where ω is a relaxation parameter and tol in the maximum difference allowed
between two successive approximations at every node.

FIG. 5. Grid for FWA domain generated by TTM algorithm.
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TABLE I

TTM Grids Experiments in the FWA Domain

r∞/z∞ N1 × N2 (Ng) Jmin; (z, x) MDO; (z, x) ADO Iters

3/3 51 × 70 (30) 5 × 10−4; (−0.03, 0.98) 74.8; (−0.03, 0.98) 11.1 150
3/3 70 × 70 (30) 2.7 × 10−4; (−0.02, 1) 78.9; (−0.02, 0.01) 11.2 236
3/3 100 × 120 (50) 8.2 × 10−5; (−0.02, 1) 82.7; (−0.02, 0.01) 11.6 444
3/3 130 × 150 (50) 5.6 × 10−5; (−0.02, 1) 85.7; (−0.02, 1) 13.6 709
6/5 180 × 220 (90) 8.8 × 10−6; (−0.01, 1) 88.6; (−0.01, 1) 11.9 1250

Grid orthogonality is an important property in grid generation. We are adopting some grid
orthogonality parameters introduced in [7]. For instance, the maximum and mean deviation
from orthogonality, MDO and ADO, respectively, are defined as

MDO = Max|90◦ − θi, j |, 2 ≤ i ≤ N2 − 1; 2 ≤ j ≤ N1 − 1
(20)

ADO =
(

1

N1 − 2

)(
1

N2 − 2

) N2−1∑
i=2

N1−1∑
j=2

(|90◦ − θi, j |).

Here, the angle θi, j is a discrete approximation for the local distortion angle between grid
lines at the point (zi, j , xi, j ),

θi, j = arccos

(
βi, j

αi, jγi, j

)
.

A summary of the characteristics of different grids resulting from the application of the
TTM grid generator to the FWA domain is reported in Table I. The column Jmin contains the
minimum value of the Jacobian as an indicator of possible singularities. The Iters column
reports the number of iterations required for the TTM method to reach convergence. The
FWA domain has an abrupt change of 270◦ at the corner points C and D of the aperture (see
Fig. 4). Therefore, neighboring grid lines experience this abrupt change as they go through
the aperture. As a consequence, TTM grids are far from being orthogonal at this region as
shown in Table I. We also notice that the maximum deviation from orthogonality as well
as the number of iterations increases for grid refinement. The values Jmin and MDO were
reached at the aperture, where the abrupt change is present. The relaxation parameter ω and
the tolerance, tol, were kept fixed at 1.85 and 10−4, respectively, for all the experiments
reported in Table I. TTM grid generator proved to be very reliable for this domain. In fact,
we were able to generate very fine grids at low computational cost, as can be seen in Table I.

In Section 2, we described the scattering of a plane electromagnetic wave from a PEC
wall. The time-domain numerical method combined with grid generation techniques will
also be applied to this benchmark problem. Thus, grids need to be generated for this domain,
which we have called the fan domain. The coordinate transformation is illustrated in Fig. 6.
The rectangular boundaries are assigned in a way that resembles the assignment for the
FWA domain without the waveguide. The grid shown in Fig. 7 was generated by applying
the TTM grid generator method with the following data: r∞ = 3, N1 = 100, N2 = 60,
ω = 1.85, and tol = 10−4.
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FIG. 6. Transformation from a rectangular domain to a fan domain.

In Table II, properties of various fan domain grids obtained by application of the TTM
grid generator are recorded. They show a strong departure from orthogonality at the left
boundary, which corresponds to the aperture in the FWA domain.

However, MDO is smaller for this case, as is expected, since the maximum angle between
grid lines for the fan domain is below 180◦. As in Table I, the relaxation parameter ω and the
tolerance, tol, were kept fixed at 1.85 and 10−4, respectively, for all the reported experiments.

FIG. 7. Fan grid generated by TTM algorithm.
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TABLE II

TTM Grid Experiments in the Fan Domain

r∞ N1 × N2 Jmin; (z, x) MDO; (z, x) ADO Iters

3 51 × 40 3.9 × 10−4; (0, 1) 66.1; (0, 0.02) 21.9 74
3 70 × 40 2.3 × 10−4; (0, 1) 71.6; (0, 0.01) 22.2 112
3 100 × 60 10−4; (0, 1) 72.7; (0, 0.01) 21.9 220
3 130 × 100 5 × 10−5; (0, 1) 71.1; (0, 0.01) 21.6 401
6 180 × 130 3.5 × 10−5; (0, 1) 79.4; (0, 0.01) 22 812

3.3. Almost Orthogonal Grids Generated Using Scaled-Laplacian Equations

Orthogonal grids are identified as those for which the parameter β = xξ xη + yξ yη of the
coordinates transformation T is null. It is well known [7, 35] that the orthogonal coordinates
z(ξ, η), y x(ξ, η) are solutions of the nonlinear system of differential equations

∂

∂ξ

(
f
∂z

∂ξ

)
+ ∂

∂η

(
1

f

∂z

∂η

)
= 0,

(21)
∂

∂ξ

(
f
∂x

∂ξ

)
+ ∂

∂η

(
1

f

∂x

∂η

)
= 0,

where the function f (ξ, η) is known as a distortion function and is defined by

f (ξ, η) =
(
z2
η + x2

η

)1/2

(
z2
ξ + x2

ξ

)1/2 . (22)

System (21), widely used in orthogonal grid generation, is known as scaled-Laplacian. We
define an orthogonal grid generation method that consists of imposing boundary conditions
over the physical domain boundary and numerically solving a Dirichlet boundary value
problem by iterative methods. We assume that f (ξ, η) is known from the previous iteration
step, linearizing the original system. Two cycles are involved in the iteration process. One
is performed until the distortion function f has been approximated within a reasonable
tolerance (global cycle). The second is the inner cycle necessary for approximating the
coordinate values for each fixed value of f . Our approach is similar to Eca’s approach [7],
but instead of discretizing the original system (21), we perform the derivatives first and
then discretize the resulting equation. The advantage is that we do not need to evaluate f
between nodes, as in Eca’s work. In fact,

fi, j =
[

(zi, j+1 − zi, j−1)
2 + (xi, j+1 − xi, j−1)

2

(zi+1, j − zi−1, j )2 + (xi+1, j − xi−1, j )2

]1/2

f1, j =
[

(z1, j+1 − z1, j−1)
2 + (x1, j+1 − x1, j−1)

2

(−3z1, j + 4z2, j − z3, j )2 + (−3x1, j + 4x2, j − x3, j )2

]1/2

fN2, j =
[

(zN2, j+1 − zN2, j−1)
2 + (xN2, j+1 − xN2, j−1)

2

(3zN2, j − 4zN2−1, j + zN2−2, j )2 + (3xN2, j − 4xN2−1, j + xN2−2, j )2

]1/2

(23)

fi,1 =
[
(−3zi,1 + 4zi,2 − zi,3)

2 + (−3xi,1 + 4xi,2 − xi,3)
2

(zi+1,1 − zi−1,1)2 + (xi+1,1 − xi−1,1)2

]1/2

,

fi,N1 =
[
(3zi,N1 − 4zi,N1−1 + zi,N1−2)

2 + (3xi,N1 − 4xi,N1−1 + xi,N1−2)
2

(zi+1,1 − zi−1,1)2 + (xi+1,1 − xi−1,1)2

]1/2

,
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FIG. 8. OG grid for FWA domain generated by scaled-Laplacian algorithm.

for j = 2, . . . , N1 − 1 and i = 2, . . . , N2 − 1. In Figs. 8 and 9, grids generated using this
method are shown. We will call them simply OG grids. In Fig. 8 we used as data z∞ = 3,
r∞ = 3, N1 = 51, N2 = 70, Ng = 30, ω = 1.85, Globaltol = 5 × 10−3, and Innertol =
10−4. Likewise in Fig. 9, the following data were used, r∞ = 3, N1 = 100, N2 = 60, ω =
1.85, Globaltol = 5 × 10−3, and Innertol = 10−4. The grid orthogonality tendency in these
figures is clearly evident when they are compared with nonorthogonal TTM grids in Figs. 5
and 7, respectively. The parameter Globaltol represents the tolerance used for the distortion
function convergence. Innertol is the tolerance used to stop the SOR inner cycle.

The shadow region in Fig. 8 shows grid line concentration at the middle of the waveguide
close to the aperture and at the aperture corners. This undesirable concentration avoids
convergence of the orthogonal algorithm for relatively coarse grid consisting of 70 × 70(30)

nodes or finer in the FWA domain with r∞/z∞ = 3/3. As stated above, computational grids
with this many nodes or more are needed for accuracy purposes.

In Tables III and IV the orthogonality property is clearly stated with a maximum orthogo-
nality deviation less than 4◦ for the fan domain, less than 6◦ for the FWA, and mean deviation
orthogonality less than 0.2◦ in both cases. The column GlIts/InIts corresponds to the ratio
of inner cycle and global cycle iterations. The GlTol contains the values for the global cycle
tolerance. Contrary to what happens in the FWA domain, very fine OG grids can be obtained
in the fan domain, as can be seen in Table IV. This fact will be exploited in the next section
to construct an algorithm capable of generating almost orthogonal grids sufficiently fine
for our computational purposes. It is also observed from Jmin values that grids generated
with this orthogonal algorithm experience less distortion than those generated by the TTM
algorithm.



TIME-DEPENDENT NUMERICAL METHOD 15

FIG. 9. Fan OG grid generated by scaled-Laplacian algorithm.

3.4. Nearly Orthogonal Grid Generation Using Generalized
Hermite Interpolation Matching

An accurate approximation of the boundary value problems solutions analyzed in this
work requires finer grids than those already obtained by the orthogonal method described
in the above section. In this section, we obtain almost orthogonal fine grids by decomposing
the FWA domain in two regions: a finite waveguide (rectangular domain) and a fan domain
(semicircular region). A uniform rectangular grid is trivially defined inside the waveguide by
means of equally spaced vertical and horizontal lines, while an orthogonal grid is obtained
using a scaled-Laplacian generator inside the fan domain as described in Section 3.3. These
two domains with their respective grids are brought together and are matched at common
aperture nodes using generalized fifth-order Hermite polynomials. The new grid is orthog-
onal everywhere except at a few nodes near the aperture, but more importantly, this grid is
smooth with continuous second-order derivatives and can be made as fine as needed for the
accuracy of the TD-BCC method. We call this grid almost orthogonal Hermite grid (OHG).

TABLE III

Orthogonal OG Grid Experiments in the FWA Domain

r∞/z∞ N1 × N2 (Ng) Jmin MDO; (z, x) ADO GlIts/InIts GlTol

3/3 40 × 70 (30) −1.3 × 10−4 5.34; (−.1, 1) 0.15 59/894 5 × 10−3

3/3 51 × 70 (30) −1.3 × 10−4 5.65; (−.1, 1) 0.13 57/937 5 × 10−3

3/3 60 × 70 (30) −1.6 × 10−4 5.74; (−.1, .0.01) 0.13 130/1023 5 × 10−3

6/5 70 × 70 (30) −5 × 10−4 5.47; (.02, 1) 0.12 99/1516 5 × 10−3
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TABLE IV

Orthogonal OG Grid Experiments in the Fan Domain

r∞ N1 × N2 Jmin; (z, x) MDO; (z, x) ADO InIts GlTol

3 51 × 40 −3.6 × 10−3; (.05, −.05) 2.63; (.12, .96) 0.17 607 10−3

3 100 × 60 1.2 × 10−3; (.12, .86) 3.02; (.08, .99) 0.08 1034 5 × 10−4

3 130 × 90 −6.5 × 10−4; (.09, .1) 3.61; (.06, .99) 0.05 2268 2.5 × 10−4

6 220 × 140 −4.3 × 10−4; (0.4, .91) 2.39; (.06, .99) 0.03 1663 2.5 × 10−4

The matching is performed over the coordinate lines (z(ξ, η j ), x(ξ, η j )), j = 2, . . . , N1−
1, η j fixed, and ξ ∈ [1, N2]. We consider only the waveguide points: (Ng − 2, η j ),
(Ng − 1, η j ), and (Ng, η j ). The z coordinate can be parameterized as z = z(ξ, η j ) = (ξ −
Ng) ∗ �z, since �z = z∞/(Ng − 1) has been chosen constant in the waveguide. Evidently,
z(ξ, η j ) has the required smoothness. To guarantee continuous second-order derivatives for
the parametric coordinate x(ξ, η j ), we construct Hermite fifth-order polynomials Hj (ξ) for
each j = 2, . . . , N1 − 1 to interpolate x(ξ, η j )between the nodes (Ng − 2, η j ), (Ng − 1, η j ),
and (Ng, η j ) that satisfy

Hj (Ng − 2) = x(Ng − 2, η j ),

d Hj

dξ
(Ng − 2) = d2 Hj

dξ 2
(Ng − 2) = 0,

(24)
Hj (Ng) = x

(
N+

g , η j
)
,

d Hj

dξ
(Ng) = (xξ )N+

g ,η j
,

d2 Hj

dξ 2
(Ng, η j ) = (xξξ )N+

g ,η j
.

We have x(Ng − 2, η j ) = ( j − 1)/(N1 − 1), since we are using a uniform partition for the
left waveguide end vertical segment. Thus the matching Hermite fifth-order polynomials
defined for ξ ∈ [Ng − 2, Ng] are given by

Hj (ξ) = ( j − 1)/(N1 − 1) + (xξ )N+
g , j

8
(ξ − Ng + 2)3(ξ − Ng)

+ (xξξ )N+
g ,η j

− 3(xξ )N+
g ,η j

16
(ξ − Ng + 2)3(ξ − Ng)

2. (25)

Table V contains several grid generation experiments using the OHG generating method.
It should be noticed that the orthogonality is lost along the interpolation vertical segments
corresponding to the coordinate lines ξ = Ng − 1 and ξ = Ng in the computational domain.
However, the orthogonality average ADO reveals that these are the only points where a

TABLE V

OHG Grid Experiments in FWA Domain

r∞/z∞ N1 × N2 (Ng) Jmin; (z, x) MDO; (z, x) ADO

3/3 51 × 70 (30) −1.5 × 10−3; (0, 0.02) 29; (0, 0.02) 0.17
3/3 71 × 60 (30) −1.02 × 10−3; (0, 0.01) 28.07; (0, 0.01) 0.16
3/3 130 × 150 (60) −2.7 × 10−4; (−.05, .97) 29.2; (0, .007) 0.048
6/5 220 × 220 (80) −1.7 × 10−4; (−0.06, 0.97) 33.3; (0, .005) 0.036
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FIG. 10. Almost orthogonal Hermite grid (OHG) for FWA domain.

deviation from orthogonality is observed. An OHG grid is illustrated in Fig. 10 for r∞ = 3,
N1 = 51, N2 = 70, and Ng = 30.

3.5. Finite-Difference Equations and Numerical Procedures

The numerical scheme is an explicit finite-difference second-order method in both space
and time. The domain is the rectangular region R = {(ξ, η) ∈ [1, N2] × [1, N1]} in the
ξ–η plane. For convenience, spatial step sizes have been chosen as �ξ = �η = 1. Thus,
for a mesh refinement N1 and N2 are increased. The temporal step �t is chosen so that
numerical stability is guaranteed. We denote ξi ≡ i�ξ = i, η j ≡ j�η = j , and tn = n�t,
where 1 ≤ i ≤ N2, 1 ≤ j ≤ N1, and n = 0, . . . , NT. The solution of the difference equation
at the point (ξi , η j , tn) is defined as W n

i, j .
The wave equation in generalized curvilinear coordinates (12) greatly simplifies in TTM

coordinates. In fact, according to coordinate transformation (19), this equation reduces to

Wtt = 1

J 2
(αWξξ − 2βWξη + γ Wηη). (26)

A different simplification occurs for orthogonal grids, since all terms containing β as a
factor cancel. Therefore, we use Eq. (12) for general grids, but for TTM or orthogonal
grids we use their corresponding simplification. For interior points (i = 2, . . . , N2 − 1, j =
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2, . . . , N1 − 1, and n = 0, 1, . . .), Eq. (26) in differenced form is given by

W n+1
i, j = 2

[
1 −

(
�t

Ji, j

)2

(αi, j + γi, j )

]
W n

i, j − W n−1
i, j +

(
�t

Ji, j

)2

αi, j
(
W n

i+1, j + W n
i−1, j

)

−
(

βi, j J 2
i, j

2�t2

)[
W n

i+1, j+1 − W n
i+1, j−1 − W n

i−1, j+1 + W n
i−1, j−1

]

+
(

�t

Ji, j

)2

γi, j
(
W n

i, j+1 + W n
i, j−1

)
, (27)

where αi, j , βi, j , γi, j , and Ji, j are the metric factors and Jacobian in differenced form. They
are defined as

αi, j = 1

4
[(zi+1, j − zi−1, j )

2 + (xi+1, j − xi−1, j )
2]

βi, j = 1

4
[(zi+1, j − zi−1, j )(zi, j+1 − zi, j−1) + (xi+1, j − xi−1, j )(xi, j+1 − xi, j−1)]

γi, j = 1

4
[(zi, j+1 − zi, j−1)

2 + (xi, j+1 − xi, j−1)
2]

Ji, j = 1

4
[(zi, j+1 − zi, j−1)(xi+1, j − xi−1, j ) − (zi+1, j − zi−1, j )(xi, j+1 − xi, j−1)].

Therefore, a 10-point numerical scheme marching in time is obtained. Similar finite-
difference equations with some more terms are obtained for the general equation (12) and
the equation corresponding to orthogonal coordinates. In Fig. 11, a graphic description of
this scheme is provided. Computation at the fictitious infinite boundaries, i = 1 or i = N2,

is cumbersome. Therefore, after substitution in the differenced equation (27), evaluation at
points out of the rectangular domain occurs. An appropriate combination of the differenced

FIG. 11. Time-dependent numerical scheme.
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form of the boundary operator Lξη and Rξη with Eq. (27) leads to the approximate values
of W n+1

1, j and W n+1
N2, j . As was stated at the beginning of Section 3, the time harmonic steady

state of W (ξ, η, t) is reached when t → ∞. We use the following stop criteria to determine
numerically this steady state for a given value Tol > 0,

max
1≤i≤N2, 2≤ j≤N1−1

∥∥W n+1
i, j

∣∣ − ∣∣W n
i, j

∥∥ < Tol.

4. DISCUSSION OF NUMERICAL RESULTS FOR THE FLANGED

WAVEGUIDE ANTENNA

In this section, we analyze the numerical results obtained when the TD-BCC method is
applied to the receiving antenna problem described in Section 2. We have generated three
different types of grids for the FWA and fan domains. Here, we show how the accuracy and
computational cost invested in calculating the numerical solution depends on the grid struc-
ture. We also perform two types of numerical experiments. One shows the grid refinement
effect on the accuracy of the numerical solution. The other experiment establishes the effec-
tiveness of the radiation conditions by changing the fictitious infinite boundary locations.

In Figs. 12 and 13 the amplitudes |W (z, x, t∞)| of the total electric field for the receiving
antenna problem are shown. They were obtained using OHG grids, an angle of incidence
δ = 0◦, frequency k = 3π/2, and a stop criterion tolerance Tol = 10−4. Two different sizes
for the FWA domain were analyzed. In Fig. 12, the exterior region was modeled with r∞ = 3,

FIG. 12. Electric field amplitude |W | for the receiving antenna problem (OHG grid) when r∞ = 3, z∞ =
3, N1 = 100, N2 = 120, and Ng = 50.
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FIG. 13. Electric field amplitude |W | for the receiving antenna problem (OHG grid) when r∞ = 6, z∞ =
5, N1 = 180, N2 = 220, and Ng = 70.

while in Fig. 13 r∞ = 6 was used. The appropriate step sizes for these two cases were
�t = 4 × 10−4 and �t = 2 × 10−4, respectively. These step sizes were experimentally
determined to guarantee stability. Figures 12 and 13 reval the expected symmetric behavior
and show a conic region in front of the aperture, where the total field is smaller compared
with the rest of the domain. As a consequence, the scattered wave is larger in this conic
region. Inside the waveguide, the incident plane wave is transformed into a single waveguide
discrete mode of amplitude |W | ≈ 1.7.

For comparison purposes maximum values of the amplitude |W | of the total electric field
are defined by regions. We designate

Ml : |Wi, j | maximum for i = 1, 2 ≤ j ≤ N1 − 1 (left boundary).
Mg : |Wi, j | maximum for 2 ≤ i < Ng, 2 ≤ j ≤ N1 − 1 (guide inner region).
Ma : |Wi, j | maximum for i = Ng, 2 ≤ j ≤ N1 − 1 (aperture region).
Mo : |Wi, j | maximum for Ng < i < N2, 2 ≤ j ≤ N1 − 1 (inside fan region).
Mr : |Wi, j | maximum for i = N2, 2 ≤ j ≤ N1 − 1 (right boundary).

In Table VI, maximum values of the amplitude |W | of the total electric field over TTM
grids are compared for various grids refinement. In all these experiments the frequency k
was held fixed as k = 3π

2 . The parameters Iters represents the total number of iterations
required for the time-dependent method to reach the time harmonic steady-state solution.
From our experiments, we observe that the maximum values of the total electric field
over a grid N1 × N2(Ng) = 70 × 70(30) are very similar to those obtained over finer grids.
However, as we will see later from the fan domain problem experiments, the two grids N1 ×
N2(Ng) = 100 × 120(50) and N1 × N2(Ng)) = 130 × 150(50) lead to important accuracy
improvements.



TIME-DEPENDENT NUMERICAL METHOD 21

TABLE VI

Maximum Values of Electric Field Amplitude over TTM Grids in the FWA Domain

for Various Grid Refinements and Varying Size Domains

r∞/z∞ �t N1 × N2 (Ng) Ml Mg Ma Mo Mr Iters

3/3 5 × 10−4 70 × 70 (30) 1.701 1.731 1.717 2.307 2.232 120 × 103

3/3 4 × 10−4 100 × 120 (50) 1.705 1.721 1.724 2.297 2.254 150 × 103

3/3 3 × 10−4 130 × 150 (50) 1.709 1.720 1.718 2.299 2.244 160 × 103

6/5 2 × 10−4 180 × 220 (70) 1.720 1.741 1.733 2.331 2.188 240 × 103

The calculation over OHG grids is performed by regions. More precisely, in the aperture
region Ng − 2 ≤ ξ ≤ Ng and 2 ≤ η ≤ N1 the finite-difference wave equation in curvilinear
coordinates used is (12), while outside this region we used the equation corresponding
to orthogonal grids (β = 0). The results for OHG grids are qualitatively the same and
quantitatively very similar to those obtained for TTM grids. They are shown in Table VII.

It is interesting to analyze the receiving antenna problem when the incident plane wave
is not normal to the waveguide aperture. In the fi
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TABLE VIII

Maximum Values of Electric Field Amplitude over TTM and OHG Grids in FWA

Domain When the Incident Wave Angle Is Oblique and r∞/z∞ = 3/3

k δ �t N1 × N2 (Ng) Ml Mg Ma Mo Mr Iters

3π/2 π/4 3 × 10−4 130 × 150 (50) 0.905 1.07 1.121 2.336 2.016 160 × 103

3π/2 π/4 3 × 10−4 130 × 150 (50) 0.886 1.091 1.142 2.360 2.033 150 × 103

8 π/6 5 × 10−5 180 × 200 (90) 1.874 2 1.816 2.343 2.201 325 × 103

numerical solution depends on the type of grid. Equation (26) is used for TTM grids, while
Eq. (12) with β = 0 is used for OG grids. Comparison with the exact solution allowed us to
establish the accuracy of the method. The results for normal incidence (δ = 0◦) and TTM
grids are summarized in Table IX, and for OG grids in Table X. We call E and Eb the absolute
errors in the inner region and the fictitious infinite boundary, respectively. More precisely,

E = max
2≤ j<N1−1, 2≤i≤N2−1

‖W (zi, j , xi, j , t∞)| − |Wi, j‖,
Eb = max

i=N2, 2≤ j≤N1−1
‖W (zi, j , xi, j , t∞)| − |Wi, j‖.

It is observed from Tables IX and X that accuracy is about the same for both types of
grids. Also, there is a slight but not a significant advantage in using OHG grids over TTM

FIG. 14. Electric field amplitude |W | for the receiving antenna problem when the incident wave angle δ = 45◦

(OHG grid) and r∞ = 3, z∞ = 3, N1 = 130, N2 = 150, and Ng = 50.
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TABLE IX

Numerical Experiments of Scattering from a PEC Wall for TTM Grids

r∞ N1 × N2 �t Mo Mr E Eb Iters

3 75 × 45 6 × 10−4 2.05 2.06 0.13 0.15 24 × 103

3 100 × 60 4 × 10−4 2.03 2.03 0.07 0.08 40 × 103

3 130 × 90 3 × 10−4 2.008 2.02 0.03 0.04 70 × 103

3 180 × 120 9 × 10−5 2.01 2.01 0.024 0.022 175 × 103

6 180 × 150 10−4 2.02 2.07 0.089 0.104 128 × 103

TABLE X

Numerical Experiments on Scattering from a PEC Wall for OG Grids

r∞ N1 × N2 �t Mo Mr E Eb Iters

3 75 × 45 6 × 10−4 2.07 2.08 0.145 0.159 22 × 103

3 100 × 60 4 × 10−4 2.04 2.042 0.09 0.03 36 × 103

3 130 × 90 3 × 10−4 2.014 2.025 0.035 0.052 60 × 103

6 180 × 150 10−4 2.026 2.068 0.075 0.109 115 × 103

FIG. 15. Electric field amplitude |W | for the receiving antenna problem when the incident wave angle δ = 30◦

(TTM grid) and r∞ = 3, z∞ = 3, N1 = 180, N2 = 200, Ng = 90, and k = 8.
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FIG. 16. Electric field amplitude |W | for the scattering from a PEC wall (TTM grid) when r∞ = 3, N1 = 180,
and N2 = 120.

grids in terms of the number of iterations required to reach the steady state. In Fig. 16,
the wave pattern is shown. The data used to obtain this figure are recorded in the fourth
row of Table IX. We chose several coordinate lines to compare evaluation of the exact
and approximate solutions over them. These results are presented in Figs. 17–19 for a
180 × 120 TTM grid. Excellent agreement was found for this grid size. A grid that fine
was required to achieve the accuracy obtained in these experiments. More precisely using
the energy norm to measure the error on these coordinate lines, we obtained the following
results:

E2,�zz≈1/2 = ‖W (zi, j , xi, j , t∞)| − |Wi, j‖�zi = 1.46 × 10−2, (28)

E2,�θr=rin f t y
= ‖W (zi, j , xi, j , t∞)| − |Wi, j‖�θk = 1.83 × 10−2, (29)

E2,�θi=40 (interm. arc) = ‖W (zi, j , xi, j , t∞)| − |Wi, j‖�θk = 5.9 × 10−3. (30)

5. APPLICATION OF THE TD-BCC METHOD TO HORN ANTENNAS

In this section, the method is applied to horn antennas with more realistic flare angles. We
study the scattering from a horn antenna with a 60◦ flare angle and a smooth bend at the aper-
ture. This antenna will be called a curved horn antenna (CHA). We also analyze the scattering
from a horn antenna with a 60◦ flare angle and a nonsmooth bend at the aperture, which will
be called a bent horn antenna (BHA). They are shown in Fig. 1. The curved horn antenna
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FIG. 17. Comparison of electric field amplitude |W | for the scattering from a PEC wall along ray j = 90
when r∞ = 3, N1 = 180, and N2 = 120. Solid line: exact solution; dotted line: TD-BCC approximate solution.

FIG. 18. Same as Fig. 17 except that solutions are shown along arc i = 40.
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FIG. 19. Same as Fig. 17 except that solutions are shown along the fictitious infinite boundary r∞ = 3.

was constructed by replacing the sharp corner at the aperture of the bent horn antenna by
a second-degree Hermite polynomial, p(z) = 1 + (

√
3/4L)(Z + L)2, −L < z < L . This

polynomial matches the waveguide wall to the left at z = −L , and the oblique antenna wall
to the right at z = L , smoothly. For purposes of comparison, the CHA was constructed iden-
tically to the BHA except in a small interval around the aperture. At this interval, the curved
horn antenna was defined using the polynomial p(z) with a moderate L value(L = 0.4).

The scaled-Laplacian orthogonal algorithm performed well for this domain and relatively
fine grids were obtained. Therefore, contrary to what we found for the FWA antenna, the
almost orthogonal Hermite grid (OHG) algorithm was not needed for the horn antennas
with 60◦ flare angle. In Fig. 20 TTM and almost orthogonal grids are shown. These graphs
correspond to 50 × 50 (20) grids that were obtained for a tolerance of 10−4. Results for
different grid sizes are summarized in Table XI for the case of TTM grids, and Table XII
contains results for OG grids. All these grids were obtained for a global tolerance of 10−4.
From Table XI, it is evident that the TTM algorithm converges faster for the CHA than for
the BHA. Also, the maximum deviation from orthogonality is less severe for the CHA.

Concentration of grid lines at the aperture near the walls is observed for both types
of antennas as shown in Fig. 20. As expected, the BHA experienced larger distortion at
those aperture corner points than did the curved horn antenna. But surprisingly, the OG
algorithm converges a little faster for the BHA than for the CHA when r∞ = 3. Deviation
from orthogonality is very similar for both cases as recorded in Table XII.

Electric field amplitude is shown in Fig. 21 for the BHA and in Fig. 22 for the CHA.
These electric fields were obtained for a domain with r∞ = 6 and z∞ = 5 and grid size
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FIG. 20. TTM and OG grids for the horn antennas.

180 × 220 (90). The time step required for stability was �t = 2 × 10−4 in both cases. The
wave pattern is very similar for both fields and very different from FWA. A comparison
along an arc (arc number 110) is presented in Fig. 23. At this close distance from the
aperture a slight difference is observed. The amplitude is higher for the CHA near the
walls, but toward the middle, the BHA amplitude reaches a higher value than the CHA.

TABLE XI

TTM Grid Experiments for Horn Antennas

r∞/z∞ N1 × N2 (Ng) Jmin MDO; (z, x) ADO Iters

Bent horn antenna
3/3 50 × 50 (20) 1.2 × 10−3 65.5; (−0.02, 0.02) 9.7 114
3/3 130 × 150 (50) 1.2 × 10−4 79.4; (0.02, 1) 11.3 502
6/5 180 × 220 (90) 7.8 × 10−5 74.9; (−0.02, 0) 9.7 1266

Curved horn antenna
3/3 50 × 50 (20) 1.8 × 10−3 64.8; (−0.03, −0.1) 9.7 113
3/3 130 × 150 (50) 1.8 × 10−4 75.4; (−0.03, −0.1) 11.3 496
6/5 180 × 20 (90) 2.2 × 10−4 68.7; (−0.01, −0.2) 9.8 942
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TABLE XII

OG Grid Experiments for Horn Antennas

r∞/z∞ N1 × N2 (Ng) Jmin MDO; (z, x) ADO GlIts/InIts

Bent horn antenna
3/3 50 × 50 (20) 2.1 × 10−4 0.9; (0.06, −0.06) 0.03 38/574
3/3 130 × 150 (50) 6.7 × 10−6 5.7; (0, 0) 0.4 30/1318
6/5 180 × 220 (90) 3.2 × 10−6 2.1; (0, 0) 0.3 24/2388

Curved horn antenna
3/3 50 × 50 (20) 1.1 × 10−3 0.5; (0.06, −0.2) 0.04 68/681
3/3 130 × 150 (50) 8.6 × 10−5 3.6; (0, −0.2) 0.23 62/1447
6/5 180 × 220 (90) 1.5 × 10−4 3.5; (0, −0.2) 0.3 24/2329

Thus, the smoothness of the antenna boundary at the aperture is responsible for a higher
electric field amplitude near the walls. Table XIII contains electric field amplitude results
for TTM and OG grids on both horn antennas. The effect of the 60◦ flare angle is not
only seen in the new wave pattern compared with the FWA antenna, but also in the higher
values of the electric field outside the waveguide. The convergence rate for the TD-BCC
method is very similar for horn and flanged waveguide antennas as can be observed from
Table XIII.

FIG. 21. Electric field amplitude |W | for the receiving horn BHA problem when the incident wave angle
δ = 0◦ (OG grid) and r∞ = 6, z∞ = 5, N1 = 180, N2 = 220, Ng = 90, and k = 3π/2.
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FIG. 22. Electric field amplitude |W | for the receiving horn CHA problem when the incident wave angle
δ = 0◦ (OG grid) and r∞ = 6, z∞ = 5, N1 = 180, N2 = 220, Ng = 90, and k = 3π/2.

6. OPTICAL THEOREM FOR A FLANGED WAVEGUIDE ANTENNA

WITH PERFECT ELECTRICAL CONDUCTOR WALLS

As pointed out in Section 3 the scattering problem described by wave equation (2) can
also be modeled by the Helmholtz equation,

∇2V + k2V = 0, where W (z, x, t∞) = V (z, x)e−ikt∞ . (31)

In Section 2, we decomposed W = Winc + Wr + Wsc, when z > 0 and r =√
(x − 1/2)2 + z2 → ∞. Also, infinite boundaries were replaced by finite artificial bound-

aries at z = z∞ and r = r∞. Therefore, V can also be decomposed as V = Vinc + Vr +
Vsc, when z > 0 and r = r∞, where Vinc = eik(−z cos δ+x sin δ), Vr = −eik(z cos δ+x sin δ), and
Vsc = A0(θ, δ) eikr√

r
+ O( 1

r3/2 ), when r = r∞. Therefore, the harmonic steady-state far field

TABLE XIII

Maximum Values of Electric Field Amplitude for Horn Antennas over TTM and OG Grids

Antenna/grid N1 × N2 (Ng) Ml Mg Ma Mo Mr Iters

BHA/TTM 180 × 220 (90) 1.85 1.9 1.88 3.52 2.2 255 × 103

CHA/TTM 180 × 220 (90) 1.95 2.01 1.95 3.50 2.22 245 × 103

CHA/OG 180 × 220 (90) 1.95 2.01 1.95 3.51 2.22 235 × 103
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FIG. 23. Comparison of electric field amplitude |W | for the scattering from a BHA and CHA along arc = 110,
r∞ = 6, z∞ = 5, N1 = 180, N2 = 220, Ng = 90, and k = 3π/2.

amplitude is given by

V (r∞, θ) = −2i sin(kz cos δ)eikx sin δ + A0(θ, δ)
eikr∞
√

r∞
+ O

(
1

r3/2
∞

)
, (32)

where x = 1
2 + r∞ sin θ and z = r∞ cos θ .

On the other hand, the steady field inside the waveguide can be represented as

V (z, x) =
∞∑

n=1

Tn(δ)e
−ikn z sin(nπx), z ≤ 0. (33)

Following a recent derivation of an optical theorem for the sound hard flanged waveguide
by Kriegsmann [24], an equivalent optical theorem,

k�r∞ + 1

2

M∑
n=1

kn|Tn|2 =
√

8πk Re
[
ei( π

4 − k
2 sin(δ)) A0(δ, δ)

]
, (34)

for the flanged waveguide with PEC walls as shown in Fig. 2 can be derived. In Eq. (34),

�r∞ =
∫ π/2

−π/2
|A0(θ, δ)|2 dθ (35)
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represents the total scattering cross section, and M is the largest integer for which the
frequency kn is real. A proof of (34) follows. First, it can be easily shown from Eq. (31) that
Im[∇.(V �∇V )] = 0, where � denotes the complex conjugate, and Im the imaginary part of
a complex number. Integrating this expansion throughout the bounded region enclosed in
Fig. 2, applying Green’s theorem, and using boundary conditions yield

I1 − I2 = Im

[∫ π/2

−π/2
V � ∂V

∂r
|r=r∞r∞ dθ

]
− Im

[∫ 1

0
V � ∂V

∂z
|z=z∞ dx

]
= 0. (36)

Substitution of (33) into the expression corresponding to I2 in (36) leads to

I2 = Im

[
− i

2

∞∑
n=1

kn
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Finally, substituting the above expressions for J2 and J3 in (42) and subtracting I2 from
I1 lead to (34). The extra factor e−ik/2 sin δ , which is not present in the sound hard optical
theorem [24], results from the difference in coordinate origin location.

In [24], it is stated that any approximate solution of a given numerical method for our
antenna BVP needs to preserve the conservation law of the original problem. We now
proceed to verify that our approximate solutions obtained by application of TD-BCC satisfy
the optical theorem, Eq. (34).

First, we need to compute the scattered far field amplitude A0(θ, δ) from the numerical
solution of the total electric field W (r∞, θ, t∞). From Eqs. (31) and (32), A0(θ, δ) can be
approximated as

A0(θ, δ) = √
r∞e−ikr∞

[
W (r∞, θ, t∞)eikt∞ + 2i sin(kz cos δ)eikx sin δ

]
. (43)

The scattering cross section, �r∞ is obtained by numerical integration along the interval
[−π/2, π/2] after substitution of (43) into the expression (35) of the scattering cross section.

Transmission coefficients for the solution inside the waveguide, T1 and T2, can also be
computed from the total electric field. In fact, from (31) and (33) we can solve for T1 and
evaluate at x = 1/2 to obtain

T1 = W (z∞, 1/2, t∞)eik1z∞eikt∞ + T3e−ik3z∞eik1z∞ + O
(
e|k5|z∞

)
. (44)

The term corresponding to T3, although small, may be important to the computation of
T1 by (44). T3 can be computed by applying the annihilating operator D1, obtained from
Dn = ∂

∂z + ikn , for n = 1, to the total steady field V in terms of the total field W . If solving
for T3 and evaluating at x = 1/2 and z = z∞, then

T3 = ieik3z∞eikt∞

k1 − k3
D1W (z∞, 1/2, t∞) + O

(
e|k5|z∞

)
. (45)

Error terms in the above expressions are exponentially small, since z∞ < 0. When frequency
k ≤ 2π , there is only one mode propagating inside the guide. However, if this frequency is
raised over 2π , there are more modes. For instance, experiments for k = 8 give two modes
inside the guide when the incident angle is δ = π/6, as shown in Fig. 15. The expression
for T2 is computed by solving for T2 in (33), evaluating at x = 1/4, and keeping the term
corresponding to coefficient T3. In fact,

T2 = eik2z∞
[
W (z∞, 1/4, t∞)eikt∞ − T1e−ik1z∞ sin(π/4)

− T3e−ik3z∞ sin(3π/4)
] + O(e|k5|z∞). (46)

We ran several experiments over almost orthogonal grids varying frequency k, incident
angle δ, grid size N1 × N2, and domain size r∞/z∞. In Table XIV, we have recorded the
results. The last column corresponds to the result obtained by dividing the right-hand side
by the left-hand side in Eq. (34) for each experiment. This shows that our approximate
solutions obtained by application of the time-dependent numerical methods with boundary-
conforming curvilinear coordinates satisfy very closely the optical theorem, Eq. (34).
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TABLE XIV

Validation of Numerical Solutions against Optical Theorem, Eq. (34)

k δ N1 × N2 r∞/z∞ Sides ratio

3π/2 0 100 × 120 3/3 1.03
3π/2 0 181 × 200 3/3 0.999
3π/2 0 180 × 220 6/5 1.05
3π/2 π/4 130 × 150 3/3 1.01

8 0 180 × 200 3/3 1.02
8 π/6 180 × 200 3/3 1.004

7. SUMMARY AND CONCLUDING REMARKS

In this article an unstaggered finite-difference time-dependent algorithm based on nu-
merically generated global curvilinear coordinates has been proposed to accurately model
scattering from prototypical antennas in 2D. An attractive feature of this work is the study
of the influence of non-cartesian orthogonal grids in the accuracy of the numerical ap-
proximation for the electric field. To the best of our knowledge this is the first time that
globally orthogonal grids other than cartesian grids have been used to numerically model
scattering of electromagnetic waves from arbitrarily shaped domains. Three types of grid
generation algorithms based on numerical solutions of elliptic PDEs are compared. The
popular nonorthogonal TTM algorithm used in many fluid dynamic problems, the scaled-
Laplacian algorithm, which produces almost orthogonal grids (OG algorithm), and a new
hybrid method that combines OG algorithm with Hermite interpolation (OHG algorithm).
The advantage of this approach is that it only requires a parametric description of the bound-
aries and definition of boundary conditions over them. Therefore, the bookkeeping usually
involved with other locally conforming methods is avoided.

The TD-BCC method achieved a reasonable accuracy for approximations of the electric
field over grids with more than 100 × 100 nodes as shown in Tables IX and X. The OG
algorithm failed to generate grids finer than 70 × 70 due to an undesirable concentration of
grid lines at the aperture of the flanged waveguide domain as shown in Fig. 8. To overcome
this problem, the OHG algorithm was devised in the present study. By means of OHG, it
was possible to numerically generate sufficiently fine almost orthogonal grids for domains
with abrupt changes up to 270◦ at corner points as those found in the flanged waveguide
domain.

Another interesting feature of the present work is a derivation of an optical theorem for the
flanged waveguide antenna with PEC walls. This theorem establishes a relationship among
the scattering cross section, transmission coefficients of the solution inside the waveguide,
and the leading-order term of the far field amplitude in the direction the incident wave.
This theorem allows an independent validation of the numerical results obtained by any
numerical technique. Our results were within 1–5% error according to this theorem (see
Table XIV). No spurious reflections were observed after fictitious infinite boundaries were
placed 3 to 6 units apart from the origin, where appropriate local annihilating operators were
defined. As a result, our computations were free of late time instability observed in other
nonorthogonal FDTD algorithms. Through numerical experimentation, it was determined
that a time step from 5 × 10−4 to 2 × 10−4 was needed for numerical stability purposes
when grids over 100 × 100 and upto 180 × 220 nodes were used for moderate frequencies
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ka = 3π/2, 8 (see Tables VI–X and XIII). Horn antennas with a 60◦ flare angle and with
sharp (BHA) and smooth (CHA) corners at the aperture were studied. A higher electric
field amplitude was obtained near the walls for the CHA. The TD-BCC convergence results
over the different grids revealed a slight advantage when OG and OHG grids were used. We
believe that the use of non-cartesian almost orthogonal grids may be even more advantageous
in scattering problems from arbitrary obstacles with interfaces and Neumann type boundary
conditions.
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